Поиск

Каталог

Наука
Фитнес
Медицина

Новости

"Арсенал" и "Манчестер Сити" сыграли вничью в матче 32-го тура английской премьер-лиги. Игра состоялась в Лондоне на стадионе "Эмирейтс — Эшбертон Гроув" и завершилась со счётом 1:1. На 18-й минуте матча "Манчестер Сити" вышел вперёд — гол забил испанский полузащитник Давид Сильва.
В 31-м туре чемпионата Италии "Милан" играет с "Кьево", "Рома" отправится в гости к "Сассуоло", "Фиорентина" – к "Сампдории". ВВ центральном матче тура встретятся В«НаполиВ» и В«ЮвентусВ». Чемпионат Италии 31-й тур ПРИМЕЧАНИЕ: время начала матчей – московское.
"Арсенал" и "Манчестер Сити" сыграли вничью в матче 32-го тура чемпионата Англии. После этой встречи лондонцы идут на четвертом месте, манкунианцы - на третьем Чемпионат Англии.
Футболки, толстовки


Питание спортсменов

Питание спортсменов

Независимо от научных взглядов, спортсмены часто практикуют использование белка в количествах, составляющих 300-775% от рекомендуемых норм потребления (Steen, 1991; Kleiner et al., 1994). В силовых видах спорта давно и прочно укоренилось мнение относительно пользы рационов с очень высоким содержанием белка для развития мышечной массы и силы при сочетании их с анаболическим стимулом силовых упражнений. Вероятно, такое расхождение с научными взглядами объясняется тем, что все исследования проводятся без использования фармакологических препаратов. Возможно, именно эффектом влияния анаболических веществ может поддерживаться существующее убеждение, хотя в целом данный воп{юс требует большего внимания со стороны исследователей.

Однозначный ответ получен сегодня на вопрос об использовании рационов с высоким содержанием белка спортсменами, чья физическая деятельность связана с нагрузками аэробного характера.
Исследовался эффект от применения высокоуглеводного рациона (7,9±1,9 г/кг массы тела - углеводы; 1,2±0,3 г/кг массы тела - жиры; 1,3+0,4 г/кг массы тела - белки) и рациона той же
калорийности с повышенным содержанием белка (4,9 ±1,8 г/кг массы тела - углеводы; 1,3±0,3 г/кг массы тела - жиры; 3,3±0,4 г/кг массы тела - белки).
Согласно данным Macdermid & Stannard (2006), происходило снижение работоспособности спортсменов после использования в течение 7 дней рациона с повышенным количеством белка и сниженным количеством углеводов.

Достаточно распространенным является представление об опасности рационов, содержащих большое количество белка. Анализ последних публикаций по данному вопросу позволяет сделать вывод об отсутствии в научной литературе экспериментальных данных относительно максимально допустимого количества белка в рационе, равно, как и обоснованного подтверждения опасности высокобелковых рационов (Bier, 2003; Young, 2003; Bilsborough & Mann, 2006). Однако это не означает отсутствия потенциальной возможности отрицательных эффектов от потребления высоких доз, как отдельных аминокислот, так и белка пищи или диетических добавок (ЮМ, 2005). Определение максимальных доз аминокислот связано с необходимостью выявления возможных отклонений от нормальных физиологических и биохимических процессов адаптации (Bier, 2003).

С использованием высокобелковых рационов часто связывают опасности повышенной нагрузки на почки, развития атеросклероза, увеличение потерь кальция и воды. Нельзя отрицать, что большое
количество белка дает дополнительную нагрузку на почки, но едва ли это представляет опасность для здорового организма, и отрицательные последствия таких рационов зафиксированы лишь в случаях нарушений функций почек. Согласно Scov et al. (1999), применение рациона, 26% энергоценности которого обеспечивалось за счет белков, не сказывалось на функции почек. Не
отмечено связи между увеличением потребления белка (с 1,2 до 2,0 г/кг массы тела) и развитием почечной недостаточности в исследованиях Poortmans & Dellalieux (2000). В исследованиях Rudman
et al. (1973) эффективность работы почек не страдала и при увеличении количества белка в рационе до 3 г/кг массы тела в сутки.

Несколько преувеличены также опасности потерь кальция и развития атеросклероза вследствие высокого содержания белков в рационе. Действительно, обнаружена положительная зависимость
между животным белком и холестерином в крови при исследованиях, проводимых на животных, но по некоторым данным, факт этот не применим к людям (West & Beynen, 1985). К тому же стоит отметить, что связь между жирами пищи и жиром в крови в целом гораздо меньше, чем можно было бы ожидать (McNamara et al, 1987; Clifton & Nestel, 1996). Но даже если допустить наличие такой связи,  вероятность отложения жира на стенках сосудов у спортсменов крайне невелика, благодаря различиям дальнейших путей метаболизма жира пищи у физически активных людей
и людей, ведущих сидячий образ жизни. Если говорить о потерях кальция, то это возможно лишь в случае использования специальных белковых добавок. Белковая же пища содержит фосфаты, которые препятствуют потерям кальция (Flynn, 1985).

При употреблении рационов с высоким содержанием белка необходимо принимать во внимание факт потерь воды. Дополнительная экскреция является следствием азотистой нагрузки на почки. Вопрос оптимального потребления жидкости спортсменами, чьи рационы содержат большие количества белка, чрезвычайно важен, так как дегидратация отрицательно влияет на спортивную  работоспособность. Сигналом необходимости дополнительной регидратации могут явиться изменения массы тела. Стоит подчеркнуть, что независимо от количества белка обязательным является присутствие в рационе спортсмена углеводов, без адекватного количества которых снижается образование АТФ (аденозинтрифосфорной кислоты), усиливается мышечный катаболизм (через глюконеогенез). Наличие углеводов - необходимое условие протекания так называемых анаплеротических («возмещающих») реакций через пируват (специальных ферментативных механизмов, пополняющих запас промежуточных продуктов цикла трикарбоновых кислот).

Основными факторами, влияющими на скорость восстановления гликогена после физической нагрузки, являются: количество углеводов, их тип, время и кратность употребления, тип физической
нагрузки. Согласно литературным данным, скорость ресинтеза мышечного гликогена максимальна, если прием углеводов происходит непосредственно после завершения физической нагрузки. Таковой
она поддерживается в течение 2 часов. Если прием углеводов происходит спустя 2 часа после физической нагрузки, то скорость образования гликогена снижается на 50%, несмотря на высокие концентрации глюкозы и инсулина крови. Объяснение этому факту кроется в снижении чувствительности мышц к инсулину в этот период.
Достаточно действенным для ресинтеза гликогена признается частый прием небольших количеств углеводов после физической нагрузки, так как в таком случае поддерживаются высокие концентрации инсулина и глюкозы в крови и эффект от употребления углеводов продлевается. По данным Blom et al (1987), употребление углеводов непосредственно после физической нагрузки и дальнейшее их поступление с интервалом в 2 часа позволяло поддерживать высокую скорость восстановления мышечного гликогена в течение б-часового восстановительного периода.
Если говорить о количестве углеводов, то прием более 1-1,5 г углеводов на кг массы тела не увеличивает синтез гликогена, но может приводить к проблемам со стороны желудочно-кишечного тракта, в частности, тошноте и диарее. Некоторые различия в метаболизме простых углеводов, в частности больший выброс инсулина после потребления глюкозы, чем фруктозы, ведут к предпочтительному использованию глюкозы и/или смеси ее полимеров для восстановления мышечного гликогена.
В исследовании Blom et al. (1987) фруктоза оказалась в два раза менее эффективна для ресинтеза гликогена, чем сахароза или глюкоза. Различия во времени задержки в желудке, меньшая скорость всасывания фруктозы и возможность дисфункций со стороны желудочно-кишечного тракта при употреблении фруктозы обуславливают предпочтение в пользу других простых Сахаров и в ходе физической нагрузки. Интересно, что использование смеси глюкозы и фруктозы приводит к повышению скорости окисления экзогенных углеводов по сравнению с использованием каждого из Сахаров в отдельности (Adopo et al., 1994). Различия между глюкозой, сахарозой и мальтодекстрином в метаболизме и влиянии на физическую работоспособность в ходе физической нагрузки если и существуют, то незначительные. Менее приемлема, с точки зрения окисления в ходе физической нагрузки, галактоза (Leijssen et al, 1995). Каких-либо эффектов рибозы, с точки зрения влияния на работоспособность и восстановление, не обнаружено (Kerksick et al, 2005).

В целях увеличения скорости ресинтеза мышечного гликогена к углеводам добавляют, как правило, небольшое количество белка. Вместе с тем данные результатов исследований по данному вопросу неоднозначны. Одни авторы сообщают об увеличении скорости ресинтеза гликогена при добавлении к углеводам белка (Van Loon et al., 2000; Ivy et al., 2002), другие - нет (Van Hall et al, 2000; Jentjens et al, 2001). Тоже можно сказать и относительно влияния на работоспособность. Есть данные, подтверждающие положительное влияние добавления белков к раствору углеводов (Williams etal, 2003), и есть отрицающие это (Betts et al., 2005; Millard-Stafford et al, 2005). Интересно, что, сравнивая различные напитки, с точки зрения их влияния на процессы восстановления и последующую работоспособность, Millard-Stafford et al. (2005) отмечали меньшую болезненность мышц после употребления напитка, содержащего белок (8% углеводов + 2% белка). Этот факт позволяет предположить определенные преимущества такого состава в периоды изнурительных тренировок или турниров. Если говорить о том, в каком виде должны поступать углеводы в организм после завершения физической нагрузки, то, с точки зрения скорости восстановления мышечного гликогена, жидкая форма не более предпочтительна, чем твердая. Однако состояние дегидратации
(обезвоживания) и подавленного аппетита обычно определяет выбор спортсмена в пользу жидкости.

Рассматривая влияние вида физической нагрузки на синтез гликогена, стоит вспомнить об эндогенном субстрате для синтеза гликогена - лактате. Если физическая нагрузка приводит к быстрому снижению концентрации гликогена, то это вызывает увеличение лактата в крови и мышцах, и синтез гликогена в этом случае может быть весьма интенсивным даже без дополнительного потребления углеводов. В свою очередь продолжительные физические нагрузки истощают запасы лактата, что приводит к возрастающей роли экзогенных источников углеводов.
Также стоит, вероятно, отметить, что на синтез мышечного гликогена может влиять повреждение мышечных волокон. Причиной ограничения его восстановления может быть снижение концентраций
белка GLUT-4, имеющее место в течение нескольких дней после физической нагрузки, повреждающей мышечные волокна.

Основными источниками энергии для мышечной работы служат, как известно, углеводы, жиры и, в меньшей степени, белки. Жир как источник энергии имеет некоторые преимущества: большая плотность (9 ккал/г для стеариновой кислоты по сравнению с 4 ккал/г для глюкозы) и большее количество аденозинтрифос-фата (АТФ) на молекулу жира (142 по сравнению с 38 для глюкозы).
Однако для получения эквивалентного количества АТФ требуется большее количество кислорода при окислении жирных кислот, чем глюкозы для полного окисления стеариновой кислоты (26 молекул кислорода, а глюкозы - 6 молекул кислорода).
В 1939 году Christensen & Hansen предоставили свидетельства о преимущественной роли жиров как источника энергии при физической активности. В настоящее время многочисленные исследования привели к пониманию зависимости вклада различных источников энергообеспечения от длительности и интенсивности физической нагрузки.

При нагрузке низкой интенсивности (мощность работы 25% от МПК) основную роль играет периферический липолиз. Скорость поступления жирных кислот из жировых депо в плазму и их окисление максимальны при данной интенсивности и снижается по мере увеличения интенсивности физической нагрузки. Из углеводов окисляется лишь глюкоза крови. Роль внутримышечных триглицеридов как источника энергии пренебрежимо мала.
При физической нагрузке с мощностью работы 65% от МПК периферический липолиз и липолиз внутримышечных триглицеридов имеют место в равной степени и в целом окисление жира максимально.
При дальнейшем увеличении интенсивности физической активности до 85% от МПК окисление жира уменьшается, причиной чему является, вероятно, увеличение концентрации катехоламинов в крови, стимулирующих гликогенолиз и использование глюкозы, что, в свою очередь, увеличивает концентрацию лактата и подавляет скорость липолиза.



ПОДЕЛИТЬСЯ В:



Рекламные ссылки

Подскажите, где найти хорошее кокосовое масло, хочу попробовать это средство.

Голосования

Нужны ли мозги в спорте?

Облако тегов

Загрузка флеш...

Подписка

Подписаться
Отказаться