Поиск

Каталог

Наука
Фитнес
Медицина

Новости

"Арсенал" и "Манчестер Сити" сыграли вничью в матче 32-го тура английской премьер-лиги. Игра состоялась в Лондоне на стадионе "Эмирейтс — Эшбертон Гроув" и завершилась со счётом 1:1. На 18-й минуте матча "Манчестер Сити" вышел вперёд — гол забил испанский полузащитник Давид Сильва.
В 31-м туре чемпионата Италии "Милан" играет с "Кьево", "Рома" отправится в гости к "Сассуоло", "Фиорентина" – к "Сампдории". ВВ центральном матче тура встретятся В«НаполиВ» и В«ЮвентусВ». Чемпионат Италии 31-й тур ПРИМЕЧАНИЕ: время начала матчей – московское.
"Арсенал" и "Манчестер Сити" сыграли вничью в матче 32-го тура чемпионата Англии. После этой встречи лондонцы идут на четвертом месте, манкунианцы - на третьем Чемпионат Англии.
Футболки, толстовки


Окислительный стресс

Окислительный стресс и другие биохимические факторы, вызывающие патологию нервной системы

 

Достижением фундаментальных нейробиологических наук является открытие единых механизмов повреждения нейрона при различных патологических состояниях – это эксайтотоксичность (от англ. excite – возбуждать) и окислительный стресс. В рамках теории эксайтотоксичности развиваются и аргументируются представления о том, что избыточное высвобождение возбуждающих нейротрансмиттеров (глутамата и аспартата) является ключевым звеном патогенеза многих заболеваний ЦНС, в том числе и перинатальных энцефалопатий и детского церебрального паралича, и обусловливает запуск биохимических реакций, ведущих к деструкции мембраны нервных клеток (Е.И.Гусев, 1992; D.W.Choi, 1988).

Особая опасность развития оксидантного стресса центральной нервной системе определяется значительной интенсивностью окислительного метаболизма в мозге. Мозг человека, составляющий 2% от общей массы тела, утилизирует 95% всего потребляемого О2. Интенсивность потребления О2 нейронами в десятки раз превышает таковую других клеток тканей (350-450 мкл О2 на 1 г ткани мозга в 1 мин при 70-90, 1,6-2,4 и 9-24 мкл О2 на 1 г ткани в 1 мин, соответственно, для сердца, скелетной мускулатуры и фагоцитирующих лейкоцитов).

При изучении повреждающих воздействий на ЦНС большое внимание уделяется липидному обмену. Это связано, прежде всего, с тем, что в нервной ткани, по сравнению с другими тканями, самое высокое содержание липидов, особенно фосфолипидов. Мозг содержит огромное количество липидов (50% сухого вещества), ненасыщенные связи которых являются субстратом для перекисного окисления липидов. Фосфолипиды составляют более половины всех липидов нервной ткани (Н.П.Таранова, 1988). Жирнокислотный состав фосфолипидов в значительной степени влияет на особенности строения и функционирования мембран: короткоцепочные насыщенные кислоты и полиненасыщенные жирные кислоты способствуют их лучшей проницаемости, а длинноцепочные насыщенные жирные кислоты обеспечивают плотность упаковки липидного бислоя. Альфалипопротеиды плазмы являются основной транспортной формой доставки полиненасыщенных жирных кислот в мозг. Основную часть фосфолипидов мозга составляют длинноцепочные полиненасыщенные жирные кислоты двух эссенциальных классов – омега-6 и омега-3 (W.E.Connor et al., 1990). Эти кислоты являются незаменимыми для млекопитающих, так как у последних в тканях отсутствуют дельта-12 и дельта-15-десатуразы, необходимые для синтеза линолевой и линоленовой кислот (W.K.Yamanaka et al., 1981). Они играют особую роль в фосфолипидах мембран, обусловливая многие свойства последних: являются структурными элементами мембран и определяют вариации мембранных свойств и функций, включая текучесть, проницаемость, поведение мембранно-связанных ферментов и рецепторов (M.A.Crawford, T.Frankel, 1975). Кроме того, кислоты этих классов играют важную роль в ряде биологических функций, так как они являются предшественниками многих биологически активных соединений, включая не только не только простагландины, но и гидрокситетраеновые кислоты, лейкотриены и липоксины.

Мозг наиболее богат полиненасыщенными жирными кислотами С22:6 и омега-3 (M.L.Gard et al., 1990; J.M.Naughton, 1981; D.A.Van Dorp, 1975). Установлено, что С22:6 и омега-3 являются важными компонентами синаптических мембран и фоторецепторов сетчатки (W.E.Connor et al., 1990). Показано, что эндотелиальные клетки ГЭБ могут захватывать эссенциальные кислоты из циркуляции, превращать их в формы, которые наиболее эффективно утилизируются нервной тканью (W.E.Connor et al., 1990). Липидные компоненты непосредственно включаются в структуры мозга, и их избыток или недостаток может приводить к нарушению его функционирования.

Кроме этого, ряд свободнорадикальных соединений участвует в процессах нейрорегуляции, в частности, NO. Дополнительным фактором риска развития окислительного стресса является большое количество аскорбата (в ткани мозга в 100 раз больше, чем в крови, в ликворе в 10 раз больше, чем в плазме), который при определенных концентрациях из антиоксиданта превращается в прооксидант и активирует неферментативные процессы перекисного окисления липидов.

Активность антиоксидантных систем в мозге – каталазы, глутатионпероксидазы – значительно ниже, чем в других тканях, что еще больше повышает риск развития окислительного стресса в центральной нервной системе. Нарушение в любом из комплексов митохондриальной дыхательной цепи может приводить к усиленной генерации радикалов О2 и развитию окислительного стресса в нервной ткани (И.А.Завалишин, М.Н.Захарова, 1996). Митохондриальные нарушения могут развиваться в результате мутаций митохондриальной ДНК токсического генеза (A.H.Shapira, J.M.Cooper, 1992; N.B.Hattori et al., 1991). Помимо дыхательной митохондриальной цепи, в норме образование свободнорадикальных интермедиатов О2 происходит в ЦНС при различных ферментативных реакциях, аутоокислении моноаминов, синтезе простагландинов, лейкотриенов. Большинство этих ферментативных реакций являются Са2+-зависимыми, поэтому любое увеличение содержания внутриклеточного Са2+ может приводить к усилению образования интермедиатов О2. В ЦНС основным пусковым механизмом оксидантного стресса является возбуждение Glu-рецепторов, при этом ионотропные рецепторы регистрируют поступление внеклеточного Са в клетку, а метаботропные стимулируют высвобождение внутриклеточного Са из клеточного депо. К известным Са-зависимым процессам относятся образование арахидоновой кислоты под действием фосфолипазы А, окисление ксантина с участием ксантиноксидазы, синтез NO при активации NO-синтазы.

Состояние оксидантного стресса в ЦНС может быть вызвано не только активацией окислительных процессов, но и угнетением или дефектностью антиоксидантной системы защиты. При этом могут быть заинтересованы как ферментные, так и неферментные антиоксиданты. Кроме самих интермедиатов О2, усиливать эксайтотоксический эффект могут другие метаболиты: например, биоактивный липид-медиатор, участвующий в сигнальной трансдукции нервных клеток (N.G.Bazan, 1993), – фактор активации тромбоцитов (ФАТ) стимулирует высвобождение Glu из пресинаптических окончаний, арахидоновая кислота тормозит обратный захват Glu астроглией (И.А.Завалишин, М.Н.Захарова, 1996), а также ионный дисбаланс в нервной ткани (C.W.Olanow, 1993). Получены данные, свидетельствующие о связи эксайтотоксического повреждения нейронов со свободными радикалами и ФАТ. В патологии нервной системы процессам ПОЛ (перекисного окисления липидов) отводится определенная роль, особенно при таких заболеваниях, как ишемический инсульт, рассеянный склероз, боковой амиотрофический склероз, гипоксическая энцефалопатия и др. (И.А.Завалишин, М.Н.Захарова, 1996; Л.Л.Прилипко, 1982; Л.И.Рейхерт, 1990; Н.П.Таранова, Н.С.Неелова, 1986; S.C.Vasdev et al., 1989). Имеются данные о влиянии уровня ПОЛ на тяжесть эпилептических приступов у детей (А.М.Коровин и др., 1991), роль ПОЛ отмечена в патогенезе синдрома Туретта и деформирующей мышечной дистонии (Е.С.Бондаренко и др., 1993).

В настоящее время накоплено большое количество данных, свидетельствующих о токсическом влиянии на нервную ткань избытка нейротрансмиттеров, в том числе катехоламинов, высвобождающихся из нейронов в эктрацеллюлярное пространство при различных патологических состояниях. Принимая во внимание нейрохимические, электрофизиологические и другими путями полученные данные, свидетельствующие о том, что норадренергические системы оказывают дезингибирующее (растормаживающее) влияние на ткань ЦНС путем торможения тормозных ГАМК-интернейронов в различных церебральных структурах (А.С.Батуев, О.П.Таиров, 1978; E.Roberts, 1974), облегчающее влияние на спинальные мотонейроны, а также на связь норадреналина с возбуждающими аминокислотами на рецепторном уровне, есть основания предполагать участие катехоламинов, в частности, норадреналина, в эксайтотоксических механизмах гибели двигательных нейронов (В.П.Бархатова и др., 1996). Возбуждающие нейротрансмиттеры могут приводить к гибели нервной ткани путем избыточной активации возбуждающих рецепторов на дендросомальной поверхности нейронов (J.W.Olney, 1988).

Показано, что эксайтоаминокислоты глутамат и аспартат (Glu и Asp), основные возбуждающие аминокислоты пирамидного тракта и интернейронов, в определенных условиях могут становиться эксайтотоксинами. В зависимости от уровня Glu и Asp в синаптической щели, эксайтотоксичность может вызывать острую гибель нейрона по типу некроза (ишемия, гипогликемия, травма) или медленно прогрессирующую дегенерацию постсинаптического нейрона (болезни Альцгеймера и Паркинсона, хорея Гентингтона, возможно, БАС, ДЦП) по типу апоптоза. Если при острой патологии ЦНС ведущим фактором в развитии “глутаматного каскада” является выход избыточного количества Glu из поврежденных нейронов, то при нейродегенеративных заболеваниях отмечается блок активного захвата нейротрансмиттера, нарушение его утилизации в астроглии или синтез эндогенных эксайтотоксинов – агонистов глутамата, способных вызывать перевозбуждение Glu-рецепторов постсинаптических мембран (M.P.Mattson, R.E.Rudev, 1993; D.Sauer, G.E.Fagg, 1992; M.P.Heyes, A.Lackner, 1991).

По гипотезе M.Beal с соавт. (1993), в основе медленной эксайтотоксическай гибели нейронов при дегенеративных заболеваниях нервной системы лежит дефект энергетического метаболизма в митохондриях. Отсроченное начало и медленное прогрессирование нейродегенеративных заболеваний авторы объясняют тем, что генетически обусловленный дефект энергетического метаболизма начинает проявлять свое повреждающее действие только после присоединения эффектов нормального старения, заключающихся в прогрессирующем снижении с возрастом активности ферментов, участвующих в митохондриальном транспорте электронов, а также в нарастании процессов окислительного повреждения митохондриальной ДНК. Селективное повреждение определенных нейронных популяций, в свою очередь, может быть связано с рядом факторов – тканевой специфичностью изоэнзимных форм комплексов дыхательной цепи, различной метаболической активностью нейрональных систем, степенью притока возбуждающих нейротрансмиттеров, количеством и типом их рецепторов, гомеостазом кальция и уровнем антигипоксантов.

Знание механизмов повреждения ЦНС, в частности, путей формирования окислительного стресса, позволяет разрабатывать новые фармакотерапевтические подходы к лечению неврологических заболеваний. К таким препаратам относятся (G.Bensimon et al., 1994; A.A.Boldyrev et al., 1994; D.W.Choi, 1995; R.D.Issels et al., 1988; S.A.Lipton, P.A.Rosenberg, 1994):

антиоксиданты и их предшественники (супероксиддисмутаза, карнозин, ацилцистеин, эмоксипин, альфа-токоферол);

ингибиторы ферментов (аллопуринол – ингибитор ксантиноксидазы, депренил – ингибитор МАО-В, нитро-L-аргинин – блокатор NO-синтазы);

хелатные соединения для связывания ионов металлов (купренил);

антагонисты Glu и различных участков Glu-рецепторов (рилузол);

антагонисты ионов Са и блокатора Са-каналов (нимопидин);

ростковые факторы (трансформирующий ростковый фактор – transforming growth factor, фактор роста нервов (ФРН) – nervev growth factor (NGF), цилиарный трофический фактор – ciliary nerve trophic factor (CNTF).

Однако все перечисленные препараты имеют ограниченный спектр действия, в связи с чем поиск эффективных антиоксидантов, проникающих через ГЭБ, является актуальной проблемой лечения оксидантного стресса при патологии ЦНС (И.А.Завалишин, М.Н.Захарова, 1996).

Установлено (B.P.Yu, 1995), что физиологически значимым антиоксидантом является мелатонин. Полагают (B.P.Yu, 1995), что модуляторами его функций являются свободные радикалы, т.е. речь идет о полезной биологической роли свободных радикалов, которая в течение многих лет практически исключалась. Влияние свободных радикалов на гормональные процессы расширяет их физиологические значение. Это подтверждается тем, что некоторые перекисные соединения азота являются вторичными мессенджерами, участвующими в различных клеточных функциях.



ПОДЕЛИТЬСЯ В:



Рекламные ссылки

Вы можете разместить здесь свою ссылку через биржу ссылок Sape!

Голосования

Нужны ли мозги в спорте?

Облако тегов

Загрузка флеш...

Подписка

Подписаться
Отказаться